Ex. 1 Standard redox potential — Lead-acid battery

The overall chemical reaction in a lead-acid battery (car) is:

$$Pb + PbO_2 + 2 H_2SO_4 \iff 2 PbSO_4 + 2 H_2O$$

Looking up the thermodynamic data for this reaction (e.g., in CRC Handbook hbcpnetbase.com, NIST.gov website, CRM's form, etc.), you would find the standard-state data at 25°C:

Compound	$\Delta_{ ext{f}} \widetilde{h}_{25^{\circ} ext{C}}^{\Theta}$ k $J/ ext{mol}$	$\widetilde{s}_{25^{\circ}C}^{\Theta}$ $J/(\text{mol}\cdot K)$
PbSO ₄	-920.00	148.5
Pb	0	64.80
PbO_2	-274.47	71.78
H ₂ SO ₄ aqueous	-909.00	20.08
$H_2O(1)$	-285.80	70.00
H ⁺ aqueous	0 (definition)	0 (definition)

Derive from these the standard redox potential for a lead-acid battery at 25°C.

Ex. 2 Standard redox potential – Influence of temperature and gases

The table below gives the standard molar enthalpy-change of formation and the standard molar entropy for some compounds, at 1 bar and 25°C.

Compound	$\Delta_{ m f} ilde{h}^{\ominus}_{25^{\circ}{ m C}}$	$ ilde{s}_{25^{\circ} ext{C}}^{\ominus}$
	kJ/mol	J/(mol·K)
H_2	0	130.6
O_2	0	205.0
H_2O (1)	-285.8	69.9
H_2O (g)	-241.8	188.7
$\mathrm{CH_{4}}$	-74.85	186.2
CO_2	-393.5	213.6

- 1. Compute the standard redox potential, E^{Θ} , for the electrochemical oxidation of:
 - a) hydrogen at 25°C;
 - b) methane at 25°C.
- 2. Write the standard redox potential as a function of temperature, $E^{\Theta}(T)$.
 - a) Plot E^{Θ} (T) in the interval $T = [25, 1000]^{\circ}$ C, for hydrogen and for methane.
 - b) Draw conclusions regarding the influence of temperature and of gases on E^{Θ} .